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J. Phys.: Condens. Maner 6 (1994) L521-UZ6. printed in the UK 

LETTER TO THE EDITOR 

Time-dependent spin correlations in the Heisenberg magnet at 
infinite temperature 

S W Loveseyt, E Engdabli, A Cuccolif, V Tognettif and E Balcars 
t DRAL Rutherford Appleton Laboratory, Oxon 0x11 CQX, UK 
t Dipmh"en de Fisica, Universita' di Fireoze, Largo E Fermi 2,1-50125 Firem, Italy 
0 Atominstitut of the Austrian Universities, A-1020 Wenna, Austria 

W i v e d  13 June 1994 

A b s t a d  A coupled-mode theory of spin fluctuations in the d-dimensional Heisenberg magnet 
at infinite temperature is used to predict the time dependence of various spin carrelation hctions. 
The real-space spin autocarrelation function is shown to have a long-time behaviour - ( I / f ) d / *  
where e = (4 +- d)/Z Properties at intermediate values of the time are exuacted from the 
theory by n u m e r i d  analysis. In this time window, the reciprocal-lattice spin autocorrelation 
function, G(q, f ) ,  is, to a good approximation, an exponential function of time. The decay rate 
is propaional to e, where q is the wavevector, Analysis of our numerical data indicates thal 
the exponent 01 depends weakly on d, and it is significantly different kom the value 2 which 
is compatible with a spin diffusion model. In the asymptotic limit defined by q + 0, f + m 
and $ f  -+ 0. G(q, L) is a hction of a single variable = (f&. This result rules against the 
validity of a diffusion d e l  also in the asymptotic l i t  

We report in this letter calculations of time-dependent spin correlations in the classical 
Heisenberg magnet at infinite temperahue. In the model magnet, unit vector spins, [Sa}, 
are arranged on a lattice of dimensions d, where d = 1, 2 or 3. The quantity used to 
formulate the calculations is the spin autocorrelation function 

G(q. 8 )  = (S(q, t )  * W-q, 0)) (1) 

in which S(q) is a spatial Fourier component of the spin density, t is the time variable, and 
G(q, 0) = 1. Values for G(q, t )  are obtained from the so-called coupled-mode theory of 
spin fluctuations. It is shown here that, according to this themy, Gfq, t )  at both intermediate 
and asymptotic ( t  + CO) times is not consistent with the conventional spin diffusion model. 
Instead, for asymptotic times we predict a power-law decrease of the spin-spin correlation 
function 

( .sa(t)  * .So(O)) - ( l / t )"B (2) 

where 8 = (4 + d)/2, while at intermediate times 

(3) 
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Table 1. Numerical analysis of K(q,  t) at intermediate times: K(q. f )  - (I/r)(dCZ)/", values 
of tk quantity LI deduced from numerical results for K ( q .  f )  at intermediate values of the time 
2, and a small value of p which is listed in the table. Results are given for the three lattices 
considered in the text: d = 1 (linear chain), d = 2 (square lanice), and d = 3 (simple cubic 
laaice). The quantity no is the lattice spacing. See also figure 2. In the asymptotic limit, the 
quantity OL is replaced by 8 = (4 + d)/2.  

d (w/4 a 

1 lm 1.62 
2 1M 1.88 
3 1112 1-89 

and numerical analysis suggests that a! depends weakly on d and takes values - 1.621 39, 
as seen in table 1. By contrast, the conventional spin diffusion model leads to a power-law 
decrease with an exponent = (d/2).  

Studies of time-dependent spin correlations in the isotropic three-dimensional 
Heisenberg magnet at high temperatures appear to date back to Van Vleck's work in 1939. 
He drew attention to the potential value of neutlon scattering experiments on paramagnets as 
a means of determining the magnitude of the exchange interaction in the sample. Later work 
by De Gennes (1958) marked the beginning of ow appreciation of the subtle wavevector 
dependence of the neutron cross-section, which is proportional to the time Fourier transform 
of G(q, i), i.e. the power spectrum. The findings from this and related work, similarly based 
on a study of frequency moments of the power spectrum, are reviewed by Marshall and 
Lowde (1968). Thereafter came seminal work by Wegner (1969), and others, that provides 
a detailed theory of critical and paramagnetic spin fluctuations; copious references are given 
in a review by Kawasaki (1975). 

A resurgence of interest in the timedependent properties of the Heisenberg magnet 
at infinite temperature is underway, partly because of intriguing results from computer 
simulations on one-dimensional (ID) systems, e.g. Srivastava et al (1994). Findings from 
such studies do not support the standard spin diffusion phenomenology. Applied to the 
autocorrelation function, G(q, t), a spin diffusion mechanism leads to 

G(q, t )  - exp(-Dq2t) 

for a sufficiently small wavevector, q. and a sufficiently long time 1. At present the authors 
of the reports of computer simulation studies do not have a consensus view as to the correct 
form for G(q, i). In part, at least, this stems from the fact that these results depend on the 
time window sampled in the data analysis. 

An alternative line of investigation is to apply at infinite temperature the theory 
developed by Wegner for 3D systems. Following this line, Lovesey and Balcar (1994) have 
shown that coupled-mode theory, as it is now normally called, applied to a ID system predicts 
different, although almost deceivingly similar, properties at intermediate and asymptotic 
times. Their results for the spin-spin correlation function, given by (2) and (3) evaluated 
for d = 1, are indeed strikingly similar to results from some computer simulation studies 
(Gerling and Landau 1989, 1990). 

Returning, for the moment, to 3D systems, Chertkov and Kolokolov (1994) predict 
the long-time behaviour of the spin-spin correlation function using a new theory of spin 
fluctuations, which seems to be different from coupled-mode theory. Citing work by Blume 
and Hubbard (1970), they claim that the exponent for (2) deduced from coupled-mode theory 
is 3/2, while they obtain a value 6t7 from the new theory. In fact, this latter exponent is 
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the same as the expression d/B, appearing in (2), evaluated for d = 3. Previous work with 
3D coupled-mode theory at infinite temperature is incomplete because it actually assumes 
the existence of a conventional spin diffusion mechanism. 

The Heisenberg model is defined by the Hamiltonian 

in which nearest-neighbour spins are coupled by an exchange interaction of strength J .  
The spin autocorrelation function, G(q, 1). is obtained from a memory function, K ( q ,  t), 
wbicb is derived from (4) by a standard method of approximation which constitutes the 
coupled-mode theory previously referred to. One finds (see, for example, Lovesey 1986) 

while G(q, t )  satisfies 

&G(q,i) = -L'df'G(q,t')K(q,t - t ' ) .  

In (5). r is the number of nearest neighbours on the lattice, e.g. r = 4 for d = 2, and yq is 
a geometric factor generated from the point-group symmetry of the lattice, and for a square 
lattice (d = 2) 

vq = +aOqx +cos aOqJ 

where is the lattice spacing. Equations (5) and (6) for d = 1 are identical to those 
analysed by Lovesey and Balcar (1994) when their renormalization parameter, pq, is set 
equal to unity for all values of the wavevector. 

Asymptotic properties (q + 0, f + CO, q2t + 0) of the autocorrelation and memory 
functions are obtained from consideration of homogeneous forms 

G(q, t )  = G(qA', t i b )  and K ( q ,  t) = AK(qAap, t i ' )  (7) 

taken in the limit A" + 0. From (6) one finds the exponent b = l/2. The second exponent, 
a, depends on dimensionality, and is derived from (5). In the asymptotic limit, the latter 
reduces to the form 

K ( q ,  r) - q2 P+l dk G2(k, t) 

and from this expression and (7), U = -1/(4 + d). Hence, in the asymptotic l i t  

G(q. I) = g098) and K ( q ,  0 = q3f(wB) (9) 

where the exponent 0 = (4+d)/2, and the scaliig functions f ( x )  and g(x)  are determined 
by coupled integral equations derived from (6) and (8). 

However, several interesting results follow directly from (8) and (9). For example, in 
the asymptotic l i t ,  

K ( q ,  F) - q*(l/t)'d+"'8 (10) 
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and C(q, t )  shares the same power-law decay with time. The result (2) for the spin-spin 
correlation function follows from the homogeneous form of the autocorrelation function and 

(S&).s,(O)) - /d-'dqG(q.t). 

The exponent of (l/t) in the spin-spin correlation function, d/0, evaluated for d = 1 and 
d = 3 agrees with the results reported by Lovesey and Balcar (1994) and Chertkov and 
Kolokolov (1994). respectively. It is interesting to observe that, if the Kubo formula is 
valid (10) implies a finite diffusion constant, i.e. 

D = (l/q*) l m d t  exp(-st)K(q, t) 
0 

evaluated with the limits q + 0, followed by s + 0. 
Properties of G(q,r) and K ( q , t )  at intermediate times, 5 g t.7 g 100, and small 

wavevectors have been deduced from a numerical analysis of (5) and (6). Figures 1 and 2 
show for d = 2, log G versus t, and log K versus logt. It is evident h m  the data that, to 
a very good approximation, G(q, t )  is an exponential function of time, and K ( q ,  t )  has an 
inverse power-law dependence on time. Similar behaviour for d = 1 bas been reported by 
Lovesey and Balcar (1994), and new calculations ford = 3 also display the same functional 
forms. 

Two-dimensional S.S. magnet 

~ ~~ ~~ ~ 

0 20 40 60 80 100 

Time 

Figure 1. The spin mtcamlation function, G(q. t )  
derived from (5) and (6) is displayed in the form log C 
versus t .  Results a~ for a square (d = 2) lattice and a 
wavevector q = (lrJ24nO); q = (n/oo) (0. U24). The 
unit ofenergy (h = b  = 1) is 4J = 1, and the unit 
inuement of time = 1.330. 

Two-dimensionai S.S. magnet 

N 

0 1 2 

Ig(t) 

Figure 2. The memorj function, K ( q , t ) ,  which 
componds to the data in figure 1 for C(q,t) is 
displayed m the form log K versus logt .  The slope 
of the linear pation of the curve. which extends f" 
logt = 0.3 to logt = 2.0. is found to be 2.13. Hence, 
frain (12) one finds a = (412.13) = 1.88. 

Hence, ford = 1,2 and 3 numerical data for the spin autocorrelation function evaluated 
for a small wavevector and intermediate times are compatible with 

G(q, t) - exp(-rtq"). (11) 

Given this expression for G(q, t) one arrives at the result (3) for the spin-spin correlation 
function. The result for K ( q ,  t) which corresponds to (11) for G(q, t) is convenient for 
obtaining an estimate of the exponent a. Using (11) in (8) 

K ( q ,  t )  - (l/t)(d+*"= (12) 
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and, for d = 2, fi,we 2 shows that this can be accurately fitted to the numerical data. 
Values of (Y obtained by fitting (12) to the data for d = 1, 2 and 3 are gathered in table 1. 
Comparing results for the spin-spin correlation function at intermediate and asymptotic 
times we conclude that the exponent of (l/t) decreases as one moves the time window to 
large values of I, and the effect is most pronounced in the largest spatial dimension. 

Note that the refined coupled-mode theory ford = 1 used by Lovesey and Balcar (1994) 
when compared to the standard version of the theory used here leads to exactly the same 
asymptotic results, and different results at intermediate times. For example, the refined 
theory (d = 1) gives cy = 1.50, cf table 1 based on the standard theory. 

Two-dimensionol S.S. magnet Two-dimensional S.S. magnet 
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sc'! 

0 

m o  - 
0 

1 2 3 0 

Time Angular frequency 

Figure 3. (a) The spin antoconelalion function, G(q. t) is displayed as a function of time for 
d = 2 (square lattice) and the wavevector at the zone boundary. p = (r/oo(l. 1). @) The power 
spectrum S(q, a), which is proportional to the cmss section for inelastic neumm scattering. 
Unik are speei6ed in the caption to figure 1. 

Three-dimensional S.C. magnet Three-dimensional S.C. magnet 
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Figure 4. The quantities shown in figure 3 are given for d = 3 (simple cubic lattice) and 
q = (r/q)(l, 1.1). The unit of energy is 61 = 1, and the unit increment of time = 1.631. 

To round off ow discussion of the Heisenberg model at infinite temperature, we consider 
the behaviour of the autocorrelation function for large wavevectors, near the Brillouin zone 
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boundary. For d = 1. Lovesey and Balcar (1994) report oscillations in G(z/uo, t )  as a 
function of time. The corresponding power spectrum, S(q, U) ,  which is proportional to the 
cross-section for inelastically scattered neutrons, is consequently significantly different from 
a Gaussian function of o. Figures 3 and 4 show G(q, t )  and S(q, o) for d = 2 and 3, and 
q at the zone boundary. It is evident that, for both lattices, G(q, t )  is strongly oscillatory 
as a function of time. The departure of S(q, o) from a Gaussian function of o is most 
pronounced for d = 3. This might be expected since the mean square width of S(q, o) 
increases with d. The second frequency moment is 

and yq = -1 at the Brillouin mne boundary. 

One of us (SWL) wishes to thank Professor H Lesche for correspondence, and the 
observation, verified by the present work, that the exponent for the spin-spin function 
obtained by Chertkov and Kolokolov (1994) for d = 3 is compatible with the exponent 
for d = 1 derived by Lovesey and Balcar (1994). AC and VT are grateful for the support 
provided by the Rutherford Appleton LaboratoIy in the period during which the work was 
completed. 
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